
Scientific Software, Java, and
Eclipse

Kenneth Evans, Jr.

Presented at the EPICS Collaboration Meeting
April 23 - 27, 2007
Deutsches Elektronen Synchrotron DESY, Hamburg, Germany

Outline

� Scientific Software and Examples
� Java
� X-Ray Software Development at the APS
� Eclipse and Examples

Scientific Software

� The language of choice used to be FORTRAN
– There are still many legacy FORTRAN codes in use

� C and C++ have become popular
– Grid computing now tends to be done in C

� Many scientists use Python
– Reasonably powerful, yet easy to use
– Allows them to do science rather than software

� There are now a number of significant scientific projects using Java
– Many started out as C, but have evolved to Java

� Java is now an acceptable, if not the preferred, language for scientific
software development

Java Analysis Studio (JAS3)

� Developed by and for the High-Energy physics community
� Plotting of 1d, 2d, 3d Histograms, XY plots, Scatter plots, etc.
� Open source
� Attractive plotting
� Fitting, other mathematical analysis

– Primarily from CERN
� Highly modular structure

– Uses plug-ins

JMol – Molecular Viewer

� Commonly used as an applet
that can be integrated into web
pages to display molecules in a
variety of ways

� Also has a standalone
application and a development
tool kit that can be integrated into
other Java applications

� Interactive, 3D
� Free, Open Source

� One of several Java Molecular
Graphics packages

•Crystal structure of an H/ACA box RNP from Pyrococcus
furiosus (PDB CODE: 2HVY)

VisAD

� Space Sciences and Engineering Center (SSEC), and others
� Extensive 2D and 3D visualization package
� Free, Open Source

VTK

� Software system for 3D computer graphics,
image processing, and visualization

� Used by thousands of researchers and
developers around the world

� Written in C++
� Has Java wrappers

– Also, Tcl/Tk, Python
� Free, Open Source

ISAW

•From: John Hammonds, IPNS

� The primary tool for analyzing neutron scattering data at the IPNS
� Has an extensive and sophisticated interface

Java ?

� Java has become a major language
� The reason is that most commercial development uses J2EE

– There is money to be made improving Java and its tools
� Applications have performance approaching applications written in C
� There is already extensive scientific development in Java
� In my opinion, there is no other viable choice for high-quality, cross-

platform, GUI development
– Huge API
– Write once, run anywhere
– Easy to code (compared to C or C++, anyway)
– Good performance
– Excellent development tools

Java Development Tools

� Spell checks as you go
– No “write – compile – load – run – figure out what happened” cycle
– Probably the one most significant productivity enhancement

� Provides content assist
– Probably the next most significant productivity enhancement

� Compiles as you write
– Cycle is now “write – run”

� Massive refactoring
– E.g. Change a variable name in all your files in all your projects

� Wizards and Tools to help at every stage
– E.g. Generate getters and setters for all your properties
– E.g. Add and/or clean up imports

� The above are just a small sample
– Some of these are available for other languages
– But usually not at the level they are for Java

Java in Matlab
� Matlab has extensive support for Java

– Your favorite software framework can also be used in Matlab

X-Ray Software Development at the APS

� Best described as “Uncoordinated”
� Wide variety of languages

– FORTRAN, C, C++, Perl, Tcl/Tk, Python, Java, …
� Visualization relies on (different) commercial products

– IDL, IGOR, Matlab, …
� Each beamline tends to do its own thing
� Modeling and Analysis is not well integrated with Data Acquisition
� Lack of real-time data reduction
� Little high-performance computing
� Little remote access
� No common data format

� A Scientific Software Section was formed to help remedy this situation

XRAYS

� Stands for X-Ray Analysis Software
– (or X-Ray Software)

� It is expected to grow into a large suite
of analysis and visualization applications

� These will include:
– Scientific workbench program
– New analysis and visualization applications
– Updating and coordination of existing analysis and visualization

applications
– A framework of software routines that developers can use to write

applications
� It currently consists mostly of exploration and prototype applications

– This is the groundwork for what we really want to do
– More than 1200 Java source files in 60 projects
– 38 Java projects intended for distribution (gov.anl.xrays.xxx)
– 10 ready-to-deploy features (collections of projects) in 4 categories

We Want to Manage the Entire Experimental Data Flow

raw data (2-D intensity,
E, T, P, t, etc.)

reduced data, I(Q)

adjustable
parameters

data reduction

experiment(s)

data analysis modeling

publication, presentation,
archival, printing

visualization

Eclipse

� Eclipse is an Open Source community
� It was started in 2001 by IBM

– IBM donated a lot of research
– Controlled the early development, but later relinquished control

� It is now controlled by the Eclipse Foundation
– Strategic members contribute up to $500K and 8 developers
– Currently 17 strategic members
– Currently more than 150 developers

� Out of the box it looks like a Java IDE (Integrated Development
Environment)

� It is really a Plug-in manager
– That happens to come with Java Development plug-ins.
– You can make it be most anything you want

XRAYS Rationalization for Eclipse
� Providing coordination is a primary goal
� Resources are limited
� Have to choose something

– Eclipse seems like the best choice
– Powerful, flexible, extensible
– Open-source
– Huge community with many projects

� Java development environment leads to high productivity
� Deployment via plug-ins appears to solve many problems

� We intend to use Eclipse, not as an IDE, but as a workbench
– Something users will use

� Downsides
– Most x-ray beamline staff and users are not using Eclipse now
– 95% will be unhappy [with anything we do]

Deployment is a Major Reason for Using Eclipse

� Both Java and Eclipse are multi-platform
� Updates are easily made through the Eclipse update mechanism
� You can wrap 3rd party applications in your own plug-ins

– For example:
The Feature “XRAYS JFreeChart”
contains gov.anl.xrays.jfreechart
which wraps JFreeChart

– Including DLLs and Shared Objects
� Guarantees they are versions that

work with your applications on all
supported platforms

� Makes it easy for the user to install
and update both your stuff and the
3rd party stuff

Eclipse for Users, not Developers

� We intend to use Eclipse as a workbench
� Something a user can come in and be up and running with in a short time

– Probably with community help
� Each user can use and customize it in his or her own way

– (That is what Eclipse provides)
� They will probably use it for more than one thing

– That is why the layout by Perspective is important
– You just switch perspectives to change tasks

� I think this paradigm is better than using RCP applications
– You provide the plug-ins
– The user manages his Workbench as he or she pleases

EPICS Control System Studio

EPICS IDE : IOC Development

A Perspective Can be a Single Application

X-Ray Experiment

•Images from: BLU-ICE and the Distributed Control System, NOBUGS III, January 2000

Prototype Implementation of ISAW

� Includes:
– A Perspective
– An Editor for

ISAW DataSets
• .run, .isd

– Some Views

� All work together
– Views change

when the edited
file changes

Area Data Editor - First Scientific Application

Thank You

This has been a

Scientific Software Presentation

Thank You

This has been a

Scientific Software Presentation

